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Theory of Solutions. I1 
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RECEIVED A P R I L 25, 1957 

By the use of suitable partition functions, an exact but formal theory of solutions is developed which yields directly thermo­
dynamic functions expressed in a particularly practical form. For example, for a binary solution (the case considered in 
the present paper), the chemical potentials and partial molal volumes, entropies and heat contents can be written as power 
series in the molality or mole fraction of the solute, with coefficients which depend on properties of the solvent (and small 
sets of solute molecules) at the same pressure and temperature as the solution. An interesting feature of these expansions 
is their formal identity with the series of Mayer 's imperfect gas theory. Three introductory examples are worked out to 
illustrate the equations. 

I. Introduction 
Rigorous statistical mechanical theories of solu­

tions have been developed by McMillan and Mayer3 

and by Kirkwood and Buff.4 The analysis is 
based in both cases on the grand canonical ensemble 
and distribution functions. The natural composi­
tion variable is the molar concentration, since the 
system is at constant volume. The McMillan-
Mayer theory is especially natural for osmotic sys­
tems. 

The above-mentioned theories are formally ex­
act and necessarily equivalent through suitable 
thermodynamic manipulations. In the present 
paper we introduce an alternative, rigorous solu­
tion theory designed to yield directly thermody­
namic functions expressed in a particularly practical 
form. For example, for a binary solution, the 
chemical potentials and partial molal volumes, en­
tropies and heat contents can be developed as 
power series in the molality or mole fraction of the 
solute, with coefficients which depend on proper­
ties of the solvent (and small sets of solute mole­
cules) at the same pressure and temperature as the 
solution. The pressure (instead of the volume) 
is held fixed at the outset and hence molality and 
mole fraction are the natural composition variables. 
An interesting feature of these series expansions is 
their formal identity5 with the series of Mayer's im­
perfect gas theory. 

Thus the present theory appears to provide the 
most direct possible molecular interpretation, 
through statistical mechanics, of solution thermo­
dynamic data expressed as power series in the 
molality or mole fraction of the solute (or solutes). 
Of course the relations presented here, though ex­
act, are formal, but no more so than the formulation 
of the McMillan-Mayer and Kirk wood-Buff solu­
tion theories in terms of (generally unknown) dis­
tribution functions. (Incidentally, distribution 
functions do not appear here in the first instance.) 
These equations do, however, provide a rigorous 
starting point for approximate theories or models. 

This first paper is restricted to a discussion of 
certain topics for a binary solution. The subject 
will be developed further along rather obvious 
lines1 in a second paper. 

(1) A preliminary note has been published elsewhere: T. L. Hill, 
J. Chem. Phys., 25, 955 (1957). 

(2) Department of Chemistry, University of Oregon, Eugene, Ore­
gon. 

(3) W. G. McMillan and J. E. Mayer, J. Chem. Phys., IS, 276 
(1945). 

(4) J. G. Kirkwood and F. P. Buff, ibid., 19, 774 (1951). See also 
F. P. Buff and R. Brout, ibid., 23, 458 (1955). 

(5) T. L. Hill, iWd., in press. 

II. Molality as Composition Variable; 
In order to obtain the desired independent vari­

ables, we use an ensemble6'7 apparently first intro­
duced by Stockmayer (in a study of the relation 
between light scattering and composition fluctua­
tions). We label the solvent as component 1 and 
the solute as component 2. Then 

TiNuP1T11X2) = e-Nm/kT = Y1 eNw/kT &N3(Nup,T) 
Ni>o (1) 

where 

AAT2 = £ e-fV/kT Q(NUN2,V,T) (2) 
V 

The /t's are chemical potentials, Q is the canonical 
ensemble partition function, and A^2 is the isother-
mal-isobaric partition function.8 The right-hand 
side of eq. 1 is seen to be a power series in the ab­
solute activity of the solute, X2 = e'"/kT, with co­
efficients which depend on the solvent (Nup,T) 
containing small numbers (N2) of solute molecules. 

Chemical Potentials.—For convenience, we re­
place the absolute activity X2 by a more practical 
activity a2, proportional to X2, but defined in such a 
way that (as will be seen below) a2 -+• W2 as w2 —»• 
0, where W2 = Nt/N1. We shall refer to W2 as the 
"molality" of the solute, though this differs from 
the conventional molality, 1000 W2/M1, by a con­
stant, where M1 is the molecular weight of the sol­
vent.9 

The substitution of a2 for X2 in eq. 1 gives, after 
dividing by the leading term, A0 

T/Ao = 1 + Ya X*a*N (3) 
2V> 1 

where 
XN = A^A0" " 1 W V A , " (4) 

02 = AtXz/iViAo (5) 
We note that Z 1 = N1. The logarithm of the 
quotient 

Aw A 0^-VAi" = e-AF*r/*r (6) 

in eq. 4 has the physical significance of a Gibbs 
free energy change, as indicated, since F = —kT 
In A in general.8 AFN in eq. 6 is the free energy 

(6) W. H. Stockmayer, ibid., 18, 58 (1950). 
(7) T. L. Hill, "Statistical Mechanics," McGraw-Hill Book Co., 

Inc., New York, N. Y., 1956, p. 73. 
(8) Reference 7, p. 66. 
(9) If we were to use the conventional molality, we would redefine 

tZ2 and X N as 

a2 = 1000 AiX2/A
riA0jW1 

v _ ^A°N~l CN1M1Y 
AN - A1" v iooo y 
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change (non-pV work done by the surroundings) 
for the process 

N systems with Ni1N2 = l.p.T-* 
( 1 system with N1,N2 = N,p,T 
{ + 
IN — 1 (solvent) systems with Ni1N2 = Q,p,T 

As has been shown elsewhere,5 eq. 3 can be ma­
nipulated in exactly the same way as can the grand 
parti t ion function for a one-component imperfect 
gas, considered a power series in the activity of the 
gas. We first note t ha t 

Ni1Ii(P1T1O) = - A T In A0 

where fn(p,T,0) is the chemical potential of the 
pure solvent. Then if we define 

n'i(p,T,m2) = y.i(p,T,m2) — vi(p,T,0) 

we have6 

_ n'i(p,T,a2) = 

Ni - A0 kT 
1 In ^- = S B1(P1T)O2' 

where 
)'->A 

Ndi = Xi = A'i 

A102 = N2 — ^ Xi 

Ni8% — Xz — X1X2 + —Ai 

(7) 

(8) 

etc. Or 

- * ( 

= l 

e-AF2ZkT 1) (9) 

= N^fe-AF^kT - e-AF^/kT + V\ 

etc. From eq. 7 and 9 we see t ha t 8-, = 0(1) , 
e~AFH/kT — 0 (1) , while the quant i ty in parentheses 
in the expression for 0,- (i.e., fy/AV-1) must be of 
order 1/AV - 1 . This situation is of course com­
pletely analogous with the imperfect gas case. 
For example (using convential notation), in the 
equation 

\ 2 7 2 2 / 

Z 2 /2 V2 = 0(1) bu t ( ) = 0(1/AO. The Bj are inten­
sive properties of the solvent (containing small sets 
of solute molecules) and are functions of p and T 
only. 

From the Gibbs-Duhem equation 

'b(-n\/kT)\ 
\ da2 

we have 

a2 I ^ j f T = m2 

•2(p,T,a2) = YtMP.TW 

(10) 

( H ) 

The inverse of eq. 11, tha t is, a2 as a power series 
in W2, is easily obtained. The logarithmic form is 
more convenient, however 

In y2(p,T,m2) = - J^ ^(p,T)m2
k (12) 

where Y2 (the solute activity coefficient) = o2/m2 

and 
5i = 202 

S2 = 303 - 602
2 (13) 

etc. General expressions for the 6$ and 5k in 
terms of the XN and 6%, respectively, are available 

elsewhere.6 Finally, if we replace O2 by W2 as in­
dependent variable in eq. 7, by use of eq. 12, we 
find 

/i'i(p,T,m2) _ 
• w - m , 

k>i k + 1 
Sk(^r)W=+1 (14) 

n2 + Y, C„(p,T)m2" 
M> 2 

where 

Cn = • « . . - i 

(15) 

(16) 

Eq. 15 is the formal equivalent of the virial expan­
sion of an imperfect gas.6 Thus eq. 12 and 15 give 
essentially the desired expansions of the two chem­
ical potentials in powers of the molality. 

I t should, perhaps, be pointed out t h a t the rela­
tions indicated above between the Bj, &k and Cn 

are basically of thermodynamic origin and t ha t 
these relations should be satisfied when experimen­
tal da ta are expressed as power series in the molal­
ity. Of course this remark does not apply to eq. 
9 which is extra-thermodynamic (molecular) in 
origin. 

Dilute Solution.—In a dilute solution 72 -*• 1 and 
O2 —»• W2, according to eq. 12. Hence, from eq. 5 

M = £r in( iViA 0 /Ai) + ATInOT2 (m2 ->- 0) (17) 

This is essentially Henry 's law. In conventional 
notat ion 

w = n%\T) + kTlnf2 (18) 
= HtP(T) + kTln k2(p,T)x2 (X2 — 0) (19) 

where/2 = fugacity of solute, X2 = mole fraction of 
solute, ki = Henry 's law constant and /̂ 2

0 = chemi­
cal potential of solute gas a t uni t fugacity. Since 
X2 -*• m<i as W2 -> 0, comparison of eq. 17 and 19 
yields, for the Henry 's law constant 

k2 = AW-^VAr/A! (20) 

If we write 
ki/Ni = A0e-w°/Ar/Aj = e-^F/kT (21) 

then AF is the Gibbs free energy change for the 
process 
system with Ni,N2 = l,p,T -*• 

'system (solvent) with Ni1N2 = 0,p,T 
+ 

1 molecule of solute in gas at J2 = 1 

Of course, when the solution is not dilute, / 2 = 
kinizyi in eq. 18, and W2 is replaced by m272 in eq. 
17. 

For the solvent, we have in general 
- v'i/kT = - In (Mi") (22) 

where/ i 0 is the fugacity of the pure solvent. For a 
dilute solution (Raoult 's law) 

-n'i/kT = - I n ( I - X2) - * X2 -<- W2 (23) 

in agreement with eq. 14 and 15. 
Free Energy.—From eq. 12 and 15, we obtain for 

the Gibbs free energy 
F 

v.i(p,T,0) 
kf 

Ml , M2 

NikT kT^ - kT 

+ m2 In / + m2 In i«i — m2 -{-

« > 2 

(24) 

Cm1" (25) 
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where 
f(p,T) = N1A0ZAi = he^'/kT (26) 

Volume.—From the thermodynamic relation 

and eq. 15, we find 

HP,T,m2) = vi(p,T) - kT Y1 (~) W2" (27) 
* > 2 \°P ZT 

Similarly, from eq. 12, we have 

v2(p,T,m2) - vf{p,T) -kT Y f S 

where 

El = f a i n A 
* r V dp JT 

For the volume we deduce 
V l -
-jrf = — = Vi + W2K2 = Vi + TtI2V2" + 
Nl pi 

The pressure derivatives of Cn (or 5k) a n d / a b o v e 
may be obtained most easily in applications simply 
b y differentiation of the particular Cn and / found where 
for the given problem. However, we give here 
general expressions which may be of some interest. 
We make use of the relation8 

Differentiation of eq. 17 leads to 

/ d i n A = _Bl 
\ dT JP kT' 

Hence, from eq. 12 

H2 = H2
0+ kT' Sg) 

4887 

(37) 

(38) 

Then 
H _ Hi + W2H2 

WikT kT 
H; + TO2H2

0 

kT 

) W2* (28) 

(29) 

The entropy expressions follow from the free en­
ergy and heat content 

£ (cn + T^)m2" (40) 

> + T^f) mj> (41) 

5 
Nik 

Si Si . . 

k=k + m + 

S2 S2(W2 -*• 0 ) 

k k 

Si + w2S2(m2 —» 0) 
k 

,?,(—*) 
+ W2 

E -4^(c„ + rfr")w2» (42) 

(43) 

VN kT 
/ 5 In AjA 
\ <>p A 

- ^ X ) Ve-PV/kT Q(Ni1N, V,T) (31) 

where VN is the mean volume of the system with 
Ni1Nt = N,p,T. Then, on differentiating either 
side of eq. 6 

fd In e-AFy/ft7^ = _ AFw 

dp /NuT 
(32) 

where A P ^ is the volume change for the process fol­
lowing eq. 6. Thus, from eq. 9, 13 and 16, we have 

T's2(m% —• 0) = H2
0 — kT\nfm2 

Using (compare eq. 31) 

SN -Es+ p?» = kT' ( ^ M (44) 

we obtain easily 

kT2(\Cf) = - ^e-^/kT AH2 

-(!?),= 
-2Ni>[e-*F>/kT AH3 + e~^F'/>>T AH2(I 

etc., and 
H2

0 = H1 - S0 (46) 
The relation 

(45) 

4e-AFs/*r)] 

kT \ dp JT 
Nie-&Fi/kT AV2 (33) (47) 

kT (~) = 2Ni^e-WtTAV, + 
\Op /T 

e-AFi/kTAF2(I - 4C-AF1ZkT )] 
etc. 

F rom eq. 29 and 31 
V2" = F1 - F0 (34) 

as might have been anticipated. Also 

Fw - Fw-i = (Fi - F0) + AVN - AVN-I (35) 

/ c)Gi\ _ _ / 5 G 2 N 
\Qm2)f,T

 2 \bm2)P,T 

which holds for any pair of partial molal quantities, 
can be used to check the self-consistency of the 
above series expansions of the partial molal free 
energies, volumes, heat contents and entropies. 

Osmotic Pressure.—Suppose we have osmotic 
equilibrium between the solution at p,T,mz and the 
pure solvent a t p — TT, T 

m(p,T,m2) = u,i(p - T1T1Q) (48) 

But 

. .r,0)=/; vi(p,T) dp (49) 

In the above equations, since kT dC„/dp is.of 
order v (volume per molecule), we see t h a t AVN m(p,T,Q) - m(p 
is of order v/N\, while [ ] in eq. 33 mus t be of order 
v/N2. The difference A F w - A VN-i in eq. 35 is of Therefore, from eq. 15, 48 and 49 
order v/N. . rp 

Heat Content and Entropy.—From r ~ I vi(p,T) dp = m2 + J2 Cn(p,T)m2" (50) 

(pjii 
\ d 

/kT\ H1 
(*' = 1.2) 

find 

Hi = Hi + kT' 
n >2 X01 /f 

(36) 

This equation determines i as a function of p, 
T and mi. If the pure solvent is incompressible, 
the left-hand side becomes TrVi/kT. 

McMillan-Mayer Theory.—McMillan and 
Mayer 3 point out tha t their equations can be 
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m a n i p u l a t e d in s u c h a w a y a s t o o b t a i n a r e l a t i o n 
b e t w e e n t h e a c t i v i t i e s of s o l u t e a n d s o l v e n t for a 
s o l u t i o n a t t h e s a m e p r e s s u r e a n d t e m p e r a t u r e a s 
t h e p u r e s o l v e n t ( in t h e i r a n a l y s i s , V is t h e s a m e for 
s o l u t i o n a n d s o l v e n t b u t Ni is d i f f e ren t ) . I n t h e 
p r e s e n t n o t a t i o n a n d t h a t of r e f e r ence 7, p . 277, 
M c M i l l a n a n d M a y e r ' s e q . 92 c a n b e p u t in t h e 
fo rm of eq . 7, w i t h , for e x a m p l e 

6i = \+ w*(z*20 + z*m ~ 2Z*n) (51) 

w h e r e A7i° is t h e m e a n n u m b e r of s o l v e n t m o l e c u l e s 
in t h e p u r e s o l v e n t , a n d t h e Z * ' s re fe r t o s o l v e n t -
s o l v e n t , s o l u t e - s o l u t e a n d s o l v e n t - s o l u t e p a i r s in 
t h e p u r e s o l v e n t , r e s p e c t i v e l y . E q u a t i o n 51 h a s 
b e e n c h e c k e d a g a i n s t t h e t h r e e e x a m p l e s in S e c t i o n 
I V . I n e v a l u a t i n g t h e _ Z * ' s , c a r e m u s t b e t a k e n 
w i t h t e r m s of o r d e r V2/Ni0. 

M o l e Fract ion and M o l a r i t y . — A n y of t h e a b o v e 
series in m2 c a n b e c o n v e r t e d eas i ly i n t o series in X2 

b y t h e s u b s t i t u t i o n 

« s = 7 = x2 + x2
2 + x2

s + . . . (52) 
1 — Xt 

H o w e v e r , m o r e d i r e c t a n d f u n d a m e n t a l e q u a t i o n s 
for t h e m o l e f r a c t i o n a r e d e r i v e d in t h e n e x t sec­
t i o n . 

T o o b t a i n se r i e s in p2 = N2/V ( w h i c h is e s sen­
t i a l l y t h e m o l a r i t y of s o l u t e ) , o n e c a n r e w r i t e eq . 
30 a s 

tm T1 , W2" . 
P2 = ni2Pi — — 1 + m2 h 

vi L »i 
kT ^ 1 / d C „ \ I'1 . . . . 

T h i s g ives t h e se r ies p2{m2). I n v e r s i o n t o p r o v i d e 
nii (p2) a n d f inal ly s u b s t i t u t i o n in t h e m i s e r i e s for 
t h e v a r i o u s t h e r m o d y n a m i c f u n c t i o n s c o m p l e t e s 
t h e p r o g r a m , w h i c h we d o n o t c a r r y o u t h e r e . 

III. M o l e Fract ion a s Composi t ion Variable 

W e g ive a m o r e c o n d e n s e d d i scuss ion in t h i s sec­
t i on s ince t h e a r g u m e n t is v e r y s i m i l a r t o t h a t in 
S e c t i o n I I . 

W e c h o o s e t h e p a r t i t i o n func t ion 1 0 in s u c h a w a y 
t h a t t h e i n d e p e n d e n t v a r i a b l e s (for a b i n a r y solu­
t i o n ) p, T a n d X2 r e p l a c e p, T a n d m2. Specif ical ly , 
t h e p a r t i t i o n f u n c t i o n is 
Y(B,p,T,Hi - Mi) = e-B^/kT = 

B 
Y, eWv-ri/kTb'^B.p.T) (54) 

N1 = 0 

w h e r e ( c o m p a r e E q . (2)) 

A'W! = Xi e-pV/kT Q[N1 = B - N2,N2,V,T) (55) 
v 

T h a t is, in t h e s u m in eq . 54, t h e t o t a l n u m b e r of 
mo lecu l e s in t h e so lu t i on , B = Nx + N2, is h e l d 
f ixed,1 1 i n s t e a d of Nx a s in eq . 1. A'.v, is a n iso-

(10) Compare the closely related partition function in reference 7, 
pp. 293-294. 

(11) The partition function T is physically appropriate (e.g., in a 
study of fluctuations) for a solution at constant p and T which is open 
with respect to component 2. Y is physically appropriate for a solu­
tion at constant p and T which can exchange one molecule for another 
with the surroundings. Other partition functions might be devised 
which would perhaps be useful in electrolyte theory in automatically 
maintaining neutrality, (a) exchange of ions with the same charge; 
(b) system open with respect to neutral pairs or groups of ions. 

t h e r m a l - i s o b a r i c p a r t i t i o n f u n c t i o n 8 ; t h e p r i m e is 
i n s e r t e d a s a r e m i n d e r t h a t N1 + TV2 is c o n s t a n t . 

A n a d v a n t a g e of Y o v e r T is t h a t Y is a poly­
nomial ( in X 2 A i ) . H e n c e t h e ze ro s of t h e p a r t i t i o n 
func t ion 1 2 c a n b e u s e d , for e x a m p l e , in a d i scuss ion 
of p h a s e t r a n s i t i o n s . E q u a t i o n 54 c a n b e r e w r i t t e n 
as 

B 

F/A'o = 1 + E * W V ( 5 6 ) 

/V = 1 

w h e r e 

X'N = A'N AY-1B"/A\N (57) 
•w = A'iX2/£A'oXi (58) 

I n t h e e q u a t i o n 

AV A ' 0 " - 1 M V = e-^F'N/kT (59) 

AF'N is t h e G i b b s free e n e r g y c h a n g e for t h e p r o c e s s 

A7 systems with Ni = B - 1, N2 = l,p,T -* 
("I system with N1 = B - N,N2 = N,p,T 
{ + 
\I\ — l(solvent) systems with Ni = B,N2 = 0,p,T 

T h e n 

Bm(p,T,0) = -kTln A'o (60) 

H1I(P1T1X2) = Hi(P1T1Xi) - ni(p,T,Q) (61) 

- ^ ¥ ^ = > £ = !>',<**>' (62) 
w h e r e 

BB'1 = X\ = B, d'l = 1 (63) 
B6'2 = X'i - \ X\\ e'2 = B (e-^F't/kT _ Pj 

e t c . F u r t h e r 

xi(p,T,w) = £ P'iiP.TW (64) 
i z 1 

a n d 

h i - = - zZ 5'k (P1T)X2" (65) 
% k> 1 

w h e r e t h e S'k a r e r e l a t e d t o t h e d'j b y e q . 13. W e 
see h e r e t h a t w —*• X2 a s X2 -*• 0. F i n a l l y 

- M ' l ( t ' I ' * 2 ) = X2 + E Cn(P1T)X2" (66) 

w h e r e t h e 5'k a n d Cn a r e r e l a t e d b y e q . 16. 
F o r a d i l u t e so lu t i on , w e p u t w = X2 a n d m = 

jUi(O) in eq . 58 a n d o b t a i n 

Hl Mi(O) , BA'a , ,.,„, 
—, = =jf=- + In -~r + In X2 (6/) 
kT kT A\ 

T h e n f rom eq. 19 

k = i*J ^m/kTe-vMkT (08) 
A i 

If we def ine AF' b y k2/B = e-^"'kr, t h e n AF' 

re fe rs t o t h e p r o c e s s 

system with Ni = B - 1, N2 = l,p,T ) 

+ • (-* 
1 molecule of solvent in pure solvent at p,T ) 

(system(solvent) with A7i = B, N2 = O.p.T 
< + 
(1 molecule of solute in gas a t /2 = 1 

If w e def ine t h e a c t i v i t y coefficient y'2 b y 

& = ^ + l » W 2 (69) 

(12) Reference 7, pp. 169-178. 
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we find from eq. 58 and 67-69 

In y'i(p,T,Xi) = l n ^ + £J 
X 2 Rl 
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l + 5\)x2 + T, ( ^ - r ^ 5 ' " - i - «'*)*** 
k> 2 V * ' 

(70) 

Of course x2y'i = w272-
For the free energy, we have 

F _ Mi(O) 
BkT kT In / ' + X2 In X2 — X2 + 

1 2; 
K > 2 ' 

C W (71) 

/'(#>,r) = SA'o/A'i = *se-i»i(o)/AT ^ 0 A r (72) 

and, for the volume 

wi — &r ^ 2 V W 3 
(73) 

t'2 = i'2° — & r 1 -— Xl + x A 
\dp /T 

»1 + A r Wi + Fi ' - K0' (75) 

= (1 — X2)K1 + X2S2
0 + 

n > 2 » - 1 \ O^ / r 

(<>Cj\ = Re-AFVftr AF' 2 (77) n^'X 
e tc . 

Similarly, for the heat content and entropy 

H1 - H1 + *r2 E C ^ ? ) *«" (78) 

n > 2 ^ 0 ^ / p 

H2 = S2O+ ^r* ( | ^ ) X2 -

H2» = H1 - fcP2 ( ^ ^ - ' ) = H1 + H\ - H'o (80) 

i f _ (1 — X2)H1 + X2H2' 
BkT ~ kT 

.?,^hr(w)^ (81) 
M > 2 

£l 
k 

£l X2 + E ( C ' . + r i g ? ) * . (82) 

s 2 S 2 (X 2 —»• 0 ) 

( + 1 + S\ + T df/ X2 

?. [1^ (^+ r5^)-(•'• + ^ ) ] " * > 2 

Ti2(X2 ->• 0) = H2
0 - M 1(0) - AT I n / ' x 2 

( 1 — X2)S1 + X2S2(X2 - » 0 ) 

(83) 
(84) 

+ X2 -Bk ~ k 

„?2^(C'" + r ^ ) " " (85) 

The osmotic pressure ir(p,T,Xz) is determined by 
P 

i f i i ( f , r ) d / . = *2+ X! C'„(£,7')x2" (86) 
P-IC » * 2 

-AFx/kT 
NIL 

IV. Introductory Examples 

We confine ourselves here, for brevity, to illus­
trat ions of Section II. 

Binary Perfect Gas Mixture.—We obtain easily13 

A I - W + N)(N1 +N- I)...(JV1 + I ) ! 
(.N1 + iy J 

(87) 

In order to calculate the 0j up to, say, 8\, all of the 
g-AF.v/fcr U p f-0 e-AFi/kT J13^g t 0 b e evaluated (by 
expanding [ ] in eq. 87) to terms of order 1/N1

1-1. 
For example 

e-AF2/kT = I ( i + JV1-
1 - Nr1 + A7r3 + . . . ) 

e-AFi/kT = i (1 + 32Vi"1 - A^"2 - JV1"
3 + . . .) (88) 

e-AFt/kT = A. (1 + 6A7,-1 + 5A7I"2 IOA7!"3 + . . . ) 

We then find from eq. 9, 13 and 16 

B1 = 1/j, 5k = (-1)*- 1 Ik, C. = ( -1 ) " - 1 In (89) 

and 

M l , O j . Os 1 , , , 

-^r = a 2 + 2 + 3+--- = _ l n ( 1 

m2 

In 72 = — OT2 + 

mi' mi" 

T + "3 

a2) (90) 

In (1 + mi) (91) 

OT2"* W 2 

+ In (1 + OT2) 

p = N1 + N2 

-T N1 

(92) 

(93) 

as expected. The tempera ture and pressure de­
rivatives of 0j, 5t and Cn are equal to zero. 

Gas Mixture with Non-interacting Solvent.— 
Solvent molecules are assumed not to interact 
with each other or with solute molecules. On the 
other hand, solute molecules are assumed to inter­
act with each other; these interactions will be 
characterized by imperfect gas virial coefficients 
B1(T), B1(J), etc. 

In notat ion introduced elsewhere14 

Q(NuNi = N) = VNlZa 
N1IA1WiNlAi*" 

(94) 

where the configuration integral for solute mole­
cules, ZN, can be wri t ten in terms of the virial co­
efficients 

Zv = I, Z1= V 
Zi = -2VB1 + V2 (95) 
Z3 = -3VB> + 12FS2

2 - 6F2S2 + Vs 

etc. We subst i tute eq. 94 in eq. 2 and integrate1 3 

(the integrals are gamma functions) to obtain the 
AAT. Then we find, for example 

(N1 + 1)\ 2 HT) 

e~AF3/"T = 6(A7Z+I)2 [(iVl + 3)(iV' + 2) ~ 
SBip 
kT 

(N1 + 2 ) + (12B2
2 - 3B3) 

(96) 

(£)'] 
(13) See eq. A3.3 of reference 7 for a derivation of AjV 

(14) Reference 7, p. 399. 
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and 

C2 = 
2 "*" kT 

B1P 
kf + 2B2

2 

r _ 1 2Bip 
Cs ~ 3 ~ Tf Vt)' 

(97) 

Pressure and tempera ture derivatives of these co­
efficients follow immediately. I t is easy to show 
tha t the expression 

- £ _ = _ "L1 

kT In (98) 
• p - T 

for the osmotic pressure (using eq. 15 and 97) is 
equivalent to 

kT PI + kT 
(99) 

Ij, = Pi + B2P2
2 + B3P3

2 + 

as would be anticipated from the model. 
Inert, Incompressible Solvent.—The solvent in 

this model is an inert incompressible fluid of vol­
ume V0 = ./ViZz1 whose only role is to provide a sus­
pension medium for solute molecules. The solute 
molecules interact with each other, as in the pre­
vious model. The solution, as well as the pure sol­
vent, is assumed incompressible with volume 

V = V0 + N2V1 

For the pure solvent we write 

Q(N11O1V) = Q0S(V - V0) 

w h e r e S ( V - Va) is the Dirac 5-function (introduced 
because of incompressibility). In general 

Q(N11N1V) = 
QaS[V-(V0 + NV2)]ZN(V) 

N ! A2
3-" 

(100) 

where ZN(V) is given by eq. 95. Then, from eq. 2 

e-P(v> + Nm)ZkT Q0ZN(V0 + Nv2) 
Aiv 

and 

e-6.FnZkT = 

N ! M3N 

ZN(V0 + Nv2) 

(101) 

N 1(V0 + v2)
N 

For example, to te rms in Ni~2 

.-wr- I [I+ 2 £ - 4 ; -(I.)'+.-] 

(102) 

(103) 

- A F i A r -I['+«|-«t. + «(t)' + 

and 

^ 2 D2 

Vi Wi 
C2 

3/^y + 2 ( W 3 , . 
2 \Vi/ \Vi/ v 

* = © ' -<* ) + 

V2B2 _ 1 B3 

V1
2 2 V1

2 

B1 

V1
2 

(104) 

The pressure derivatives of these coefficients van­
ish, of course. The osmotic pressure is given by 
(with eq. 15) 

kT 
M i 
kT 

(105) 

which can be shown without difficulty to be equiva­
lent to 

kT 

BETHESDA, M D . 

= P2 + B2p2
2 + B3p2

3 + (106) 
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Structure and Properties of the Condensed Phosphates. 
and Some Applications 

XII. Reorganization Theory 

B Y J. R. PARKS AND J. R. V A N W A Z E R 

RECEIVED MARCH 14, 1957 

Reorganization is first treated in terms of equilibria between the various phosphate building units (branches, middles and 
ends) as well as between them and orthophosphate and unreacted M4O. Variation of the relative proportions of these units 
with the M 2 0 /P 2 0s mole ratio is discussed in terms of the amount of ionization of the M's in the M2O-P2O6 system. Molecu­
lar structures are developed on the basis of statistics. In addition to the random-reorganization distribution function first 
obtained by Flory, a new distribution function is derived on the basis of Information Theory. The Flory distribution cor­
responds to flexible chains (un-ionized molecules); whereas the new distribution corresponds to rigid rods (polyelectrolytes). 
Both of these distribution functions apply only to those values of the M 2 0 / P 2 0 6 ratio at which there is a vanishingly small 
amount of branching units. The principles presented herein are generally applicable to all systems composed of reorganizing 
molecular structures, ranging from un-ionized, non-polar molecules to completely ionized polyelectrolytes. 

In a previous paper1 the basic principles of the 
s tructure of sodium phosphate glasses were enun­
ciated, and the key difference between these glasses 
and the condensed phosphoric acids was denoted in 
a qualitative manner. In the following discussion, 
we shall extend these principles quanti tat ively to 
all amorphous phosphates which are in equilibrium 
with respect to reorganization of their structures. 
I t should be noted t ha t the distribution theory de-

(1) J. R. Van Wazer. T H I S JOURNAL. 72. 044 (1050). 

rived here is of general application to all reorganiz­
ing systems—'not only phosphates but other 
systems as well. 

Reorganization Theory 
Let M stand for an equivalent of any cation or or­

ganic radical in a phosphate, which can then be 
written as x M , 0 -^P2O6. The reorganizing, single-
phase (liquid) phosphates can be described in terms 
of an M2OZP2O5 mole ratio, R = x/y. Although 
in high-temperature melts the oxygens of a given 


