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Theory of Solutions. I!

By TeErRrReLL L. HrLr?
RECEIVED APRIL 25, 1957

By the use of suitable partition functions, an exact but formal theory of solutions is developed which yields directly thermo-
dynamic functions expressed in a particularly practical form. For example, for a binary solution (the case considered in
the present paper), the chemical potentials and partial molal volumes, entropies and heat contents can be written as power
series in the molality or mole fraction of the solute, with coefficients which depend on properties of the solvent (and small
sets of solute molecules) at the same pressure and temperature as the solution. An interesting feature of these expansions
is their formal identity with the series of Mayer’s imperfect gas theory. Three introductory examples are worked out to

illustrate the equations.

I. Introduction

Rigorous statistical mechanical theories of solu-
tions have been developed by McMillan and Mayer?®
and by Kirkwood and Buff.* The analysis is
based in both cases on the grand canonical ensemble
and distribution functions. The natural composi-
tion variable is the molar concentration, since the
system is at constant volume. The McMillan—
Mayer theory is especially natural for osmotic sys-
tems.

The above-mentioned theories are formally ex-
act and necessarily equivalent through suitable
thermodynamic manipulations. In the present
paper we introduce an alternative, rigorous solu-
tion theory designed to yield directly thermody-
namic functions expressed in a particularly practical
form. For example, for a binary solution, the
chemical potentials and partial molal volumes, en-
tropies and heat contents can be developed as
power series in the molality or mole fraction of the
solute, with coefficients which depend on proper-
ties of the solvent (and small sets of solute mole-
cules) at the same pressure and temperature as the
solution. The pressure (instead of the volume)
is held fixed at the outset and hence molality and
mole fraction are the natural composition variables.
An interesting feature of these series expansions is
their formal identity® with the series of Mayer’s im-
perfect gas theory.

Thus the present theory appears to provide the
most direct possible molecular interpretation,
through statistical mechanics, of solution thermo-
dynamic data expressed as power series in the
molality or mole fraction of the solute (or solutes).
Of course the relations presented here, though ex-
act, are formal, but no more so than the formulation
of the McMillan-Mayer and Kirkwood—Buff solu-
tion theories in terms of (generally unknown) dis-
tribution functions. (Incidentally, distribution
functions do not appear here in the first instance.)
These equations do, however, provide a rigorous
starting point for approximate theories or models.

This first paper is restricted to a discussion of
certain topics for a binary solution. The subject
will be developed further along rather obvious
lines! in a second paper.

(1) A preliminary note has been published elsewhere: T. L. Hill,
J. Chem. Phys., 28, 955 (1957).

(2) Department of Chemistry, University of Oregon, Eugene, Ore-
gon.

(8) W. G. McMillan and J. E. Mayer, J. Chem. Phys., 18, 276
(1945).

(4) J. G. Kirkwood and F. P. Buff, ipid., 19, 774 (1951).
F. P. Buff and R. Brout, $bid., 28, 458 (1955).

(6) T. L. Hill, $bid., in press.

See also

II. Molality as Composition Variable

In order to obtain the desired independent vari-
ables, we use an ensemble®” apparently first intro-
duced by Stockmayer (in a study of the relation
between light scattering and composition fluctua-
tions). We label the solvent as component 1 and
the solute as component 2. Then

T(Ny,p, Toue) = e Nw/kT = 3 eNwn/kT Ayy(Ny,p, T)
Nzzo (1)

where
Awy = D e dV/ET Q(Ny, N, V,T) (2)
vV

The u's are chemical potentials, Q is the canonical
ensemble partition function, and Ay, is the isother-
mal-isobaric partition function.! The right-hand
side of eq. 1 is seen to be a power series in the ab-
solute activity of the solute, A, = e#/*T with co-
efficients which depend on the solvent (Ny,p,T)
containing small numbers (V2) of solute molecules.

Chemical Potentials.—For convenience, we re-
place the absolute activity A; by a more practical
activity a,, proportional to Ay, but defined in such a
way that (as will be seen below) a, — m; as m; —
0, where my, = No/Ni1. We shall refer to m; as the
“molality’’ of the solute, though this differs from
the conventional molality, 1000 #m,/M;, by a con-
stant, where M is the molecular weight of the sol-
vent.?

The substitution of a, for A; in eq. 1 gives, after
dividing by the leading term, A,

T/ =1+ 2, Xva (8)
N>1

where

X~y = AyAF INF /AN (4)

aQg = A1)\2/N1Ao (5)

We note that X; = N;. The logarithm of the
quotient

ANAY “1/AY = ¢~AFN/RT (6)
in eq. 4 has the physical significance of a Gibbs
free energy change, as indicated, since F = —kT

In A in general® AFy in eq. 6 is the free energy

(6) W. H. Stockmayer, ¢bid., 18, 58 (1950).
(7) T. L. Hill, "*Statistical Mechanics,” McGraw-Hill Book Co.,
1nc., New York, N. Y., 1956, p. 73.
(8) Reference 7, p. 66.
(9) If we were to use the conventional molality, we woulc. redefine
az and XN as
ay = ].OOO A1)\2/N1A0M1
AnAQN 1 f N{ MV
Xy = TAN '——)
Ay 1000



4886

change (non-pV work done by the surroundings)
for the process

N systems with N,N; = 1,,T —
{ 1 system with N,N» = N,p,T
+
N — 1 (solvent) systems with N1i,No = 0,p,T

As has been shown elsewhere,® eq. 3 can be ma-
nipulated in exactly the same way as can the grand
partition function for a one-component imperfect
gas, considered a power series in the activity of the
gas. We first note that

.NU“(P,T,O) = —kTIn Ag
where ui(p,7,0) is the chemical potential of the
pure solvent. Then if we define
v p, Tmz) = wlp, Tyme) — a(p, T,0)
we have’

’
_#ipTe) 1 T _ 3 i -
BT =¥ In &~ 0;(p, Taz )
where
N01 = Xl = N1
. . 1.,
N2 = )&2 - 5A12 (8)
. 1.
A‘103 = X3 - X1X2 + g)&ﬁ
etc. Or
01 = ].
9, = N <e—AFz/kT _ é ) 9)

g; = le<e—AF;/kT — ¢~ARRT + é.)

etc. From eq. 7 and 9 we see that §; = O(1),
e~AFx/kT = (1), while the quantity in parentheses
in the expression for §; (i.e., §;/N¢=1) must be of
order 1/Ny¢-1. This situation is of course com-
pletely analogous with the imperfect gas case.
For example (using convential notation), in the

equation
v Z2 1
<'2_“VJ2 - 5)

Z,/2Vt= 0(1) but () = O(1/N). The §; are inten-
sive properties of the solvent (containing small sets
of solute molecules) and are functions of p and T
only.

From the Gibbs-Duhem equation

a <a( —#/1/kT)> =m
2 adz 2T :

b2=

(10)

we have

ma(p,Toaz) = 2, jos(p, Tas’ (11)
i>1

The inverse of eq. 11, that is, a; as a power series
in ., is easily obtained. The logarithmic form is
more convenient, however

In vo(p, Tyme) = — 3, du(p,TIms*

E>1

where v, (the solute activity coefficient) = ay/m,
and

(12)

81 = 202
82 = 30; — 6622 (13)

ete. General expressions for the §; and éx in
terms of the Xx and 6;, respectively, are available
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elsewhere.® TFinally, if we replace ¢, by m; as in-
dependent variable in eq. 7, by use of eq. 12, we
find

w'i(p, T,ms) T k
—_ T gy — 7 u(p, DImt 1 (14)
AT AT
=my + 2, Calp,T)ms” (15)
n22
where
= -2=1s, (16)

Eq. 15 is the formal equivalent of the virial expan-
sion of an imperfect gas.® Thus eq. 12 and 15 give
essentially the desired expansions of the two chem-
ical potentials in powers of the molality.

It should, perhaps, be pointed out that the rela-
tions indicated above between the 6;, 8, and C,
are basically of thermodynamic origin and that
these relations should be satisfied when experimen-
tal data are expressed as power series in the molal-
ity. Of course this remark does not apply to eq.
9 which is extra-thermodynamic (molecular) in
origin.

Dilute Solution.—In a dilute solution vy, —> 1 and
@y — my, according to eq. 12. Hence, from eq. 5

Mo = ET In (leAo/AO + ET In nig (M2 - O) (17)
This is essentially Henry’s law. In conventional
notation
pe = w(T) + kT In fi (18)
= 1w(T) + T In ks(p, T)xs (19)
where f; = fugacity of solute, x, = mole fraction of
solute, 2, = Henry’s law constant and ps® = chemi-
cal potential of solute gas at unit fugacity. Since
Xy —> Mg as my —> 0, comparison of eq. 17 and 19
yields, for the Henry’s law constant

ks = A’V1Ao€—‘“°/kT/A1

(%2 — 0)

(20)
If we write

ko/ N1 = Age#0/kT /A = ¢~AF/kT (21)
then AF is the Gibbs free energy change for the
process

system with Ni,N, = 1,p,T —
{system (solvent) with N|,N, = 0,p,T

1 molecule of solute in gasat fo = 1
Of course, when the solution is not dilute, f; =
kamaye in eq. 18, and m;, is replaced by m.y: in eq.

17.
For the solvent, we have in general

- #'1/kT = —In (fl/flo) (22)
where f{° is the fugacity of the pure solvent. Fora
dilute solution (Raoult’s law)

—M’l/kT = —ln(l ot xg)—>x2—>m2 (23)

in agreement with eq. 14 and 15.
Free Energy.—From eq. 12 and 15, we obtain for
the Gibbs free energy

F M1

—_— = " s
NiT T k1 T Mr (24)
= “1<i';l)_) + mylu f + ol ome — my -
1
R — 3 Iy
Z P Cumny*  (25)

w2
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where
F(p,T) = NiAg/Ay = koewt®/RT (26)
Volume.—From the thermodynamic relation

ou'y =7 —
<a—p>7"m2 =17 0N
and eq. 15, we find

(p, Tome) = w(p,T) — kT 2. aa—i"
n22

Similarly, from eq. 12, we have

3u(p, Toms) = 58(p,T) — kT Z (aak> mF (28)

o <a In f)
kT T\ 2 /r
For the volume we deduce
K‘ = £= v+ mal: = v1 + mat? +

N, p1
1 oC,
ir T sy (5g)me @0

n—l

)ng" 27

where

(29)

The pressure der1vat1ves of Cx (or 8k) and f above
may be obtained most easily in applications simply
by differentiation of the particular C, and f found
for the given problem. However, we give here
general expressions which may be of some interest.
We make use of the relation®

Oln AN) _
ap NLT

Zl; > Ve—sV/ET Q(N,N,V,T) (31)
v

Vv = — kT

where Vy is the mean volume of the system with
NN = N,p,T. Then, on differentiating either
side of eq. 6

Oln e“AFN/kT) _
op T

where AVy is the volume change for the process fol-
lowing eq. 6. Thus, from eq. 9, 13 and 16, we have

acz)
op
kT (gi“) = 9N2[eAF/kTAV; +

e AF/RTAVy(1 — 4e~AF2/kT )]

AVxN

T (32)

kT Nie=AF/ET AV, (33)

etc.
From eq. 29 and 31
W=7 -V (34)
as might have been anticipated. Also
Vv — Vvor = (Vi — Vo) + AVN — AVN_1 (35)

In the above equations, since 27" 0C,/0p is of
order v (volume per molecule), we see that AVy
is of order v//Vy, while { ] in eq. 33 must be of order

v/Ni?. The difference AVy — AVy_;in eq. 35 is of
order v/ Ni.
Heat Content and Entropy.—From
Oui/kT _ = .
oT )pm =3 =12
we find
— Cn
Hy = H + kT2 Z aaT)pWM" (36)

n 22
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Differentiation of eq. 17 leads to

2lns\ _ _ A
( Y ),,‘ ~%r (37)
Hence, from eq. 12
Ho= GO AT S (g—‘;’:) ek (38)
k21 ?
Then
__H/J _ ﬁl + quf-iz _ H; + 7712;120 _
NT kT - kT
1 2CN .
n§2 n—.—_——]: T <'a—7:')p”l2 (39)

The entropy expressions follow from the free en-
ergy and heat content

S1
P-z+m+ ¥ (a
k k n2 2

A
bT) m (40)

5o _ So(me—0) -+ Z <6)c + T )mzk (41)

k ET >1
S s1 o meSy(my — 0) _
Nk p +om
1 oG\ . ..
ng:?n = 1<C" +T aT) mi" (42)
where
T3o(ms — 0) = HY — kT In fm, (43)
Using (compare eq. 31)
Ay = Ex+ pVn = kTt M) (44)
0T /wup
we obtain easily
kT (aacTz) — NieARRT AH,  (45)
2G\
e (57), =

—2N,2[e~AFs/kT AH; + ¢~AF/kT AHN(1 — 4e-aF2/kT)]
etc., and
HY) = H, — Hy (46)

The relation

) o (2)
omzs/ p, T 2\ ome T

which holds for any pair of partial molal quantities,
can be used to check the self-consistency of the
above series expansions of the partial molal free
energies, volumes, heat contents and entropies.

Osmotic Pressure.—Suppose we have osmotic
equilibrium between the solution at p,7,m,; and the
puresolventatp — «, T

wm(p, Toms) = m(p — =, T,0)

(47)

(48)
But

w(p,T,0) — m(p — =, T,0) = f:_
Therefore, from eq. 15, 48 and 49

i f, D@ = mt T o Tms

n2 2
This equation determines » as a function of p,
T and m,. If the pure solvent is incompressible,
the left-hand side becomes »v1/k7.
McMillan-Mayer  Theory.—McMillan and
Mayer? point out that their equations can be

Wvl(P.T) dp (49)

(50)
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manipulated in such a way as to obtain a relation
between the activities of solute and solvent for a
solution at the same pressure and temperature as
the pure solvent (in their analysis, 1 is the same for
solution and solvent but Np is different). In the
present notation and that of reference 7, p. 277,
McMillan and Mayer’'s eq. 92 can be put in the
form of eq. 7, with, for example
1 N{’
=3+ oy

(Z*0 + Z%2 — 22%1) (51)
where V{® is the mean number of solvent molecules
in the pure solvent, and the Z*’s refer to solvent—
solvent, solute—solute and solvent-solute pairs in
the pure solvent, respectively. Equation 51 has
been checked against the three examples in Section
IV. In evaluating the Z*'s, care must be taken
with terms of order V2/N{°.

Mole Fraction and Molarity.—Any of the above
series in m, can be converted easily into series in x,
by the substitution

X2
1 — %
However, more direct and fundamental equations
for the mole fraction are derived in the next sec-
tion.

To obtain series in p; = N,/ V (which is essen-
tially the molarity of solute), one can rewrite eq.
30 as

g = = X2 + x2% + %23 + ... (52)

me 72°
p2 = M2p =—|:1 + me— +
N U1

BT 1 /3G .

—zrn§2n - 1<bp)Tm2:|
This gives the series py(m,). Inversion to provide
ms(p2) and finally substitution in the me-series for

the various thermodynamic functions completes
the program, which we do not carry out here.

III. Mole Fraction as Composition Variable

We give a more condensed discussion in this sec-
tion since the argument is very similar to that in
Section II.

We choose the partition function® in such a way
that the independent variables (for a binary solu-

(83)

tion) p, T and x; replace p, 7" and m,. Specifically,
the partition function is
Y(B,p,Toue — ) = e Bu/kT =
B
> eNatu~w)/ET A'ny(B,p,T) (54)
N2=0

where (compare Eq. (2))
Alwa = D, e pV/ET Q(N1 = B — No,No, V,T)  (55)
v

That is, in the sum in eq. 54, the total number of
molecules in the solution, B = N; + Ny, is held
fixed,!! instead of Vi as in eq. 1. A’y, is an iso-

(10) Compare the closely related partition function in reference 7,
pp. 293-294.

(11) The partition function T is physically appropriate (e.g., in a
study of fluctuations) for a solution at constant p and T which is open
with respect to component 2, Y is physically appropriate for a solu-
tion at constant p and T which can exchange one molecule for another
with the surroundings. Other partition functions might be devised
which would perhaps be useful in electrolyte theory in automatically
maintaining neutrality: (a) exchange of ions with the same charge;
(b) system open with respect to neutral pairs or groups of ions.

TeERRELL L. HILL
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thermal-isobaric partition function®; the prime is
inserted as a reminder that Ny 4 V. is constant.
An advantage of ¥ over I is that ¥V is a poly-
nomial (in A2/A1). Hence the zeros of the partition
function!? can be used, for example, in a discussion
of phase transitions. Equation 54 can be rewritten

as
B
Y/ah =14+ Y, X'yw¥ (56)
N =1
where
X'y = A'y A'VT1BY /AN (57)
w = Ag/BA'N (58)
In the equation
Ay AGN1/ANN = ¢-AF'N/RT (59)

AF'y is the Gibbs free energy change for the process
N systems with Ny = B — 1, Ny = 1,p,T —
{1 system with Ny = B — N,N; = N,p,T
+
N — 1(solvent) systems with Ny = B,N. = 0,p,T
Then

Bu(p,T,0) = —kT 1In Ay (60)
#II(P»T»xZ) = #I(P»T»M) - #1(?!7‘»0) (61)
’ 4
- ﬂ%@iﬂ =%111 ZI%, = j; 9’ (p, Dw!  (62)
where
B0l1 = .¥I1 = B, 0/1 = ]. (63)

Bo'y = X'5 — %Xllz, 8, = B <e"AF'2/kT - g))

etc. Further

xw(p,Tow) = 2, j8'(p.T)w! (64)

izt

and

2 = — 3 % (p, s (65)

X2 B> 1
where the 8’y are related to the 6’; by eq. 13. We
see here that w — %, as x; — 0. Finally
- &lj%,xg) =x+ 2, Cup D (66)

n22
where the 6’ and C’, are related by eq. 16.

For a dilute solution, we put w = x; and yg =
©1(0) in eq. 58 and obtain

2 AI
ky—} = #}:(2) + Iu BA'10 + ln xy

Then from eq. 19

(67)

Ey = BAA,:" eui(0)/kTg ~uid/RT"
If we define AF’ by ky/B = e~ 37'/*T, then AF’
refers to the process
system with Ny = B — 1, N. = 1,p,T
+

(68)

—
1 molecule of solveut in pure solvent at p,T}
{system(solvent) with Ny = B, N; = 0,p, T
1 molecule of solute in gasat fo = 1
If we define the activity coefficient ', by

s _
o kT kT
(12) Reference 7, pp. 169-178.

+ In Aexsy’s (69)
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we find from eq. 58 and 6769

In o/o(p, Ts) = In & + 23
n (P, 4 %2 —nx BT
= — (1 +8)x + Z k ; 15/1:—1 - 5/k>x2k (70)
k> 2
Of course %27’y = mavye.
For the free energy, we have
Bl%“ ’“(O) +xolnf + xolnxe — %2 +
1
> Claxs®  (71)
nsa® 1
(9, T) = BAW/A'Y = koe mlO/RT ek (72)
and, for the volume
-— bcln n
N =1 — anEQ ap )sz (73)
’
Ty = 7 — kT(%‘)sz +
E— 17081 08k
i T [ (55). - ) o
ké:? E \op Jr \2p (74
’
Egu =" + kT a lanpf )T =U + V1l - Vol (75)
V 730
-E = (1 — x2)01 + x2BL +
1L (3Ch\
an§2n = (5 ) wr (70)
kT(aCl) = BemaFW/RT AV, 77)
ete.

Similarly, for the heat content and entropy
—_— acln
Hy = H, + kT? <—) x2"
1 1 n§2 3T /» 2

Hy = H I+ kT2 <b§ ) Xy —

(78)

oT
E—1 55 k—1 068’k
v 3 [E () - (B )= @
k=22 ? oT
AP = Hy — AT? (aé_an) =u + 7 — By (80)
P
H (1 —x)H + 28

BkT kT

nz>:2” — T(-——) x* (81)

51 _ a1 ol
F=Pd e+ D (C'n )xz" (82)
R =, T
= ’
2=S_2£%0)+<1+5/1+ T%a_Tl)xz_

S (o r25) = (o + TSR |
ké)?[ - (ak_1+TaT o+ 72%) |

(83)
(84)

x| o

T§2<X2 - O) = ﬁzo b #1(0) — kT In f/xg

S _ (1 = x)s1 + xa8x(x2 — 0)
Bk 3

bD

n 22
The osmotic pressure 7(p,7,%2) is determined by

+ X2 —

X

(c' + T°C”) (85

n—l

ka”‘(f’ T)dp = m + 2 Cu(p,Thest (86)

. 72
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IV. Introductory Examples

We confine ourselves here, for brevity, to illus-
trations of Section II.
Binary Perfect Gas Mixture.—We obtain easily!?

_1 I:(N1 + N)Y(N:+ N —1).. (N + 1):|
NI

-AFN/kET
il (N, + ¥

(87)

In order to calculate the 6; up to, say, 61, all of the
e AFx/kT yp to ¢—AFVRT have to be evaluated (by
expanding [ ]in eq. 87) to terms of order 1/Ny !
For example

e AR /kT =%(1 + N7l — N7+ N3 )
Ni=8 . 0)

e~ AF/RT = %(]_ + 3N,"l — N2 — (88)

e~AF/kT = 2% (1 + 6N,"L 4+ 5N;72 — 10N,"% + ...)

We then find from eq. 9, 13 and 16

= 1/.7» 0k = (—l)k—l /k, C. = (‘—1)"—1 /Z’, (89)
and
—Z—T‘=az+‘§+“§3+...=—m(1—az) (90)
=mz—%zz+%2—3—...=ln(l+mg) (91)
1n'72=—mz+mT22—m?23+...=—1n(l+mg)
(92)
P _N1+1\72
P A (93)

as expected. The temperature and pressure de-
rivatives of 8;, 8¢ and C, are equal to zero.

Gas Mixture with Non-interacting Solvent.—
Solvent molecules are assumed not to interact
with each other or with solute molecules. On the
other hand, solute molecules are assumed to inter-
act with each other; these interactions will be
characterized by imperfect gas virial coefficients
By(T), Bs(T), ete.

In notation introduced elsewhere!4

VN1Zx

ANLNz = N) = iy

(94)

where the configuration integral for solute mole-
cules, Zw, can be written in terms of the virial co-
efficients

Zo=1,21 =7V

Zy = —2VBp + V2

Z; = —3VB; + 12VBy2 — 6V2B, + V3

(93)

etc. We substitute eq. 94 in eq. 2 and integrate!?
(the integrals are gamma functions) to obtain the
Ayx. Then we find, for example

N+ 2 BZ?
e~AF2/kT = T 1)( kT) (96)
e—AFs/kT = m |:(N1 + 3)(N1+ 2y —
Bsz

(N1 + 2) + (1282 — 3B,) (k_?) :|

(13) See eq. A3.3 of reference 7 for a derivation of Ay.
(14) Reference 7, p. 399,
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and
1 | By

— g = — =+ =2

2 kT

RN AL

Pressure and temperature derivatives of these co-
efficients follow immediately. It is easy to show
that the expression

In

b _ _#h
p—r ET (98)
for the osmotic pressure (using eq. 15 and 97) is
equivalent to
p T
T = M + 5T
(99)

7:7: = p2 -+ Bap? + Bips® + ...
as would be anticipated from the model.

Inert, Incompressible Solvent.—The solvent in
this model is an inert incompressible fluid of vol-
ume V, = Nyzy whose only role is to provide a sus-
pension medium for solute molecules. The solute
molecules interact with each other, as in the pre-
vious model. The solution, as well as the pure sol-
vent, is assumed incompressible with volume

V = TVi+ N,
For the pure solvent we write
Q(NLO, V) = Qud(V — Vo)
where (V' — 1) is the Dirac é-function (introduced
because of incompressibility). In general

Qd[V — (Vo + Nu)]Zn(V)

N A (100)

Q(NLN, V)=

J. R. Parks AND J. R. VAN WAZER
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where Zy(V) is given by eq. 95. Then, from eq. 2

_ e~ p(Vo -+ Nu)/kT QZn(Vy + Nuva)

N N AV (101)

and

Zw(Vo + Nus)
“AFy/kT = 2 2 4 72/
erans N1(Vo + w2

For example, to terms in NV, 2

e—AFz/kT=é[1+23 9B _ <2)2+ ]
0

(102)

Vi Vo Vo
(103)
1 12 B: <2)2)2
—AF/kT = = = g = 22
e~4Fs/ 6[1+6V0 67 +6(3) +
Bg ¢ ‘leB} _ _& :|
12(70) 185 -3t
and
b = 2 — Bl _ G
U1 U1
3 [v2\? B, 2= 1 B;
=== =) - 3= = = 4
% 2(”1) + 2( 1) 8 v? 2 n? (104)

- (%)’ 2By | B
G = (vl) - 2<v1“’)+v12
The pressure derivatives of these coefficients van-
ish, of course. The osmotic pressure is given by
(with eq. 15)

U1 1

’1

ET - T RT

which can be shown without difficulty to be equiva-
lent to

(105)

= pz + Baps? + Bipe® + ... (106)
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Structure and Properties of the Condensed Phosphates.

XII. Reorganization Theory

and Some Applications

By J. R. PARKS AND J. R. VAN WAZER
RECEIVED MARCH 14, 1957

Reorganization is first treated in terms of equilibria between the various phosphate building units (branches, middles and

ends) as well as between them and orthophosphate and unreacted M,0.

Variation of the relative proportions of these units

with the M,O/P,0; mole ratio is discussed in terms of the amount of ionization of the M’s in the M,O~P;0; system. Molecu-

lar structures are developed on the basis of statistics.

In addition to the randoin-reorganization distribution function first

obtained by Flory, a new distribution function is derived on the basis of Information Theory. The Flory distribution cor-
responds to flexible chains (un-ionized molecules); whereas the new distribution corresponds to rigid rods (polyelgctrolytes).
Both of these distribution functions apply only to those values of the M;O/P;0; ratio at which there is a vanishingly small

amount of branching units,

The principles presented herein are generally applicable to all systems composed of reorganizing

molecular structures, ranging from un-ionized, non-polar molecules to completely ionized polyelectrolytes.

In a previous paper! the basic principles of the
structure of sodium phosphate glasses were enun-
ciated, and the key difference between these glasses
and the condensed phosphoric acids was denoted in
a qualitative manner. In the following discussion,
we shall extend these principles quantitatively to
all amorphous phosphates which are in equilibrium
with respect to reorganization of their structures.
It should be noted that the distribution theory de-

(1) I. R. Van Wazer, Turs Journat, 72, 644 (1950).

rived here is of general application to all reorganiz-
ing systems—not only phosphates but other
systems as well.
Reorganization Theory

Let M stand for an equivalent of any cation or or-
ganic radical in a phosphate, which can then be
written as xM,0-yP;0s. The reorganizing, single-
phase (liquid) phosphates can be described in terms
of an M,0/P,0s mole ratio, R = x/y. Although
in high-temperature melts the oxygens of a given



